The Sodium Niobate NaNb₃O₈: A Novel Lamellar Oxide Synthesized by Soft Chemistry

R. NEDJAR, M. M. BOREL, A. LECLAIRE, AND B. RAVEAU

Institut des Sciences de la Matiere et du Rayonnement, Université de Caen, Ecole National Superieure D'Ingenieurs de Caen, Caen Cedex 14032, France

Received October 20, 1986; in revised form February 5, 1987

The ion-exchange properties of the lamellar protonic niobate $HNb_3O_8 \cdot H_2O$ allowed the hydrate $NaNb_3O_8 \cdot 2.5H_2O$ to be synthesized. The thermolysis of this latter hydrate allowed the oxides $NaNb_3O_8 \cdot H_2O$ and $NaNb_3O_8$ to be prepared. These three compounds are characterized by an orthorhombic cell whose parameters are closely related to those of KNb_3O_8 , in agreement with their lamellar character:

a = 8.971(9) Å; b = 28.84(4) Å; c = 3.790(4) Å for NaNb₃O₈ · 2.5H₂O a = 9.072(10) Å; b = 22.34(3) Å; c = 3.792(3) Å for NaNb₃O₈ · H₂O a = 8.771(14) Å; b = 10.16(2) Å; c = 3.784(3) Å for NaNb₃O₈

The structure of NaNb₃O₈ has been studied from X-ray powder data; a structural model has been established which shows that NaNb₃O₈ consists of octahedral layers similar to those observed in KNb₃O₈; the two structures differ from each other by the relative positions of the layers. The structure of NaNb₃O₈ can be deduced from that of KNb₃O₈ by a translation of an octahedral layer out of two of c/2. This behavior of potassium and sodium is different from that observed in other lamellar oxides Na₂Ti₃O₇, K_xTi_{2-x}M_xO₄ and NaMnO₂- β . © 1987 Academic Press, Inc.

Introduction

The recent analysis of the structural relationships in lamellar oxides (1) has shown that it is possible to predict closely related structures built from identical layers but one differing from the other by the relative positions of those layers. This difference was shown to be due to the nature of the A cations located between the layers and which can take a different coordination according to their size. This is illustrated by the comparison of the three titanates and titanoniobates Na₂Ti₃O₇ (2), K₃Ti₅NbO₁₄ (3), and CsTi₂NbO₇ (4), which are all characterized by similar [M₃O₇] layers of octa-

ways in the three structures. Moreover, sometimes a progressive transition from a layer structure to a close-packed structure can be observed as the size of the A ion decreases as shown for the cobalt oxides $A_x \text{CoO}_2$ (5, 6). An interesting lamellar oxide KNb₃O₈ was recently described by Gasperin (7) and

hedra and which are translated in different

was recently described by Gasperin (7) and was found to exhibit ion-exchange properties leading to the protonic oxide $HNb_3O_8 \cdot$ H_2O (8). The direct synthesis of $NaNb_3O_8$ by action of sodium carbonate and niobium oxide does not allow a lamellar oxide to be built: a tetragonal tungsten bronze structure is isolated by such a method (9). From the previous analysis, it appears that a lamellar structure should be stabilized for $NaNb_3O_8$ by using soft chemistry. Thus, the present work deals with the study of the ion-exchange property of $HNb_3O_8 \cdot H_2O$ in the presence of a soda solution, of the thermolysis of the exchanged products, and of the structure of the final niobate $NaNb_3O_8$ synthesized at low temperature.

Experimental Methods

The ion-exchange reaction was carried out by adding 2 g of the oxide $HNb_3O_8 \cdot H_2O$ in 100 ml of an aqueous solution of NaOH(N). The reaction was favored by stirring the mixture.

Thermolysis was controlled by using thermal differential analysis and thermogravimetry with a Setaram microbalance.

The sodium content after the exchange reaction was determined by atomic absorption spectroscopy. The X-ray powder diffraction patterns were registered with a Philips goniometer with the $CuK\alpha$ radiation. The intensities of the different reflections were measured by planimetry.

The density of the products was determined by pycnometry at 25°C in carbon tetrachloride.

Results

The exchange of the proton by sodium ion is very fast; the reaction is completed after several minutes:

$$\begin{array}{l} HNb_{3}O_{8}\cdot H_{2}O \,+\, Na_{aq}^{+} \rightarrow \\ NaNb_{3}O_{8}\cdot 2.5H_{2}O \,+\, H_{aq}^{+} \end{array}$$

The reaction is reversible: by action of an acid solution on the sodium niobate, the oxide $HNb_3O_8 \cdot H_2O$ is regenerated.

The thermodifferential and microthermogravimetric analyses of the hydrate NaNb₃ $O_8 \cdot 2.5H_2O$ show its low stability: the two endothermic peaks whose maxima are ob-

FIG. 1. The thermogravimetric and thermodifferential curves of $NaNb_3O_8 \cdot 2.5H_2O$.

served at 50 and 130° C (Fig. 1b) correspond to the loss of 1.5 and 2.5 mole of water, respectively (Fig. 1a), according to the equation:

$$NaNb_{3}O_{8} \cdot 2.5H_{2}O \xrightarrow{50^{\circ}C} NaNb_{3}O_{8} \cdot H_{2}O \xrightarrow{130^{\circ}C} NaNb_{3}O_{8}$$

Although the hydrate NaNb₃O₈ \cdot H₂O is stable at room temperature, it exhibits a zeolithic character: it can be rehydrated in a wet atmosphere, reforming the hydrate NaNb₃O₈ \cdot 2.5H₂O. The rehydration of NaNb₃O₈, however, has not been found to be possible. At higher temperature, 780°C, the thermodifferential curve (Fig. 1b) shows an exothermal peak, corresponding to an irreversible structural transition for NaNb₃O₈, leading to the tetragonal tungsten bronze structure previously described (9).

The X-ray diffraction study of the dehydration process shows that the three compounds $NaNb_3O_8 \cdot 2.5H_2O$, $NaNb_3O_8 \cdot$ H_2O , and $NaNb_3O_8$ are structurally closely related to $HNb_3O_8 \cdot H_2O$; i.e., they exhibit a lamellar structure built-up from identical layers of octahedra. The spectrum obtained

CRYSTALLOGRAPHIC DATA						
Compound	a (Å)	b (Å)	c (Å)	Space group	$d_{ m cal}$	d _{obs}
KNb ₃ O ₈	8.903(3)	21.16(2)	3.799(2)	Amam		
$NaNb_3O_8 \cdot 2.5H_2O$	8.971(9)	28.84(4)	3.790(4)	Pncn	3.22	3.34
$NaNb_3O_8 \cdot H_2O$	9.072(10)	22.34(3)	3.792(3)	Pmnn; P2nn	3.87	3.89
NaNb ₃ O ₈	8.771(14)	10.16(2)	3.784(3)	$Pmnm; Pmn2_1$	4.23	4.17

TABLE I

with a	a (Gu	inie	r-Lenne	ca	mera	she	ows
clearly	tha	at	no	intermedi	ate	hydra	tes	are
formed	l du	rin	g th	ne thermo	lysi	s.		

The three compounds are characterized, like KNb₃O₈, by an orthorhombic cell (Table I) whose a and c parameters, which characterize the $[Nb_3O_8]$ layers, are rather similar and close to those of KNb₃O₈. Nevertheless the *a* parameter of NaNb₃O₈ is smaller than those of the other oxides. The b parameter which corresponds to the direction perpendicular to the Nb₃O₈ layers increases with the water content. It is worth noting that the two niobates $NaNb_3O_8 \cdot 2.5H_2O$ and $NaNb_3O_8 \cdot H_2O$ which have b parameters of the same order of magnitude as that of KNb₃O₈ are characterized by different space groups. The anhydrous niobate NaNb₃O₈ is remarkable in that it exhibits a b parameter two times smaller; thus it is clear that b corresponds in this latter case to the interlayer spacing. From this simple observation it appears that two successive $[Nb_3O_8]$ layers are at the same level along b in NaNb₃O₈, contrary to KNb₃O₈ where they are displaced of c/2. The structural study of NaNb₃O₈ was undertaken in order to understand this difference. The Guinier powder pattern is given in Table II.

Structural Study of NaNb₃O₈

No single crystal could be isolated for the determination of the structure. Thus the structure was studied from powder diffractogram on the 39 first reflections, i.e., 108

hkl. The reflection condition *hol:* h + l = 2n leads to two possible space groups *Pmnm* and *Pmn2*₁. The calculations were performed in the centrosymmetric group *Pmnm*. The positions of the oxygen and

TABLE II Guinier Powder Pattern NaNb₃O₈ Cu*Kα*₁ Radiation

h k l	dobs	$d_{ m calc}$	hkl	d _{obs}	$d_{\rm calc}$
010	10.077	10.165	051	1.794	1.791
110	6.612	6.640	151	1.760	1.757
020	5.073	5.082	212	1 713	∫1.712
200	4.382	4.385	341	1./12	l]1.711
210	4.013	4.027	160		1.663
011	3.535	3.546	440	1.660	{1.660
030	3.388	3.388	520		1.658
220	3.320	3.320	222	1.644	1.644
130	3.165	3.160	501	1 607	∫1.591
021	3.021	3.035	260	1.567	l1.580
121	2.864	2.868	511	1 570	∫1.572
310	2.800	2.809	312	1.570	ો1.569
211	2.753	2.757	161		(1.523
230	2.685	2.681	441	1 520	J 1.520
040	2.544	2.541	521	1.520	1.519
031	2.526	2.524	042		L 1.517
131	2.428	2.426	360		[1.466
301	2.313	2.313	600	1.462	{1.462
311	2.253	2.256	261		[1.458
330	2.217	2.213	531	1 /20	∫1.440
321	2.105	2.105	332	1.437	1.438
050	2.038	2.033	071	1.360	1.356
420	2.012	2.013	512	1.276	1.276
150	1.986	1.980	013		1.252
340	1.919	1.918	352		1.251
002	1.892	1.892	162	1.252	{ 1.250
012	1.855	1.860	103		1.248
112	1.812	1.819	442		L1.248

	and the second sec			
	x	у	z	B
 Nb(1)	94	76	1 4	0.6
Nb(2)	14	48	$\frac{1}{4}$	0.6
Na	14	92	3	0.8
O(1)	44	28	1.4	1.
O(2)	03	90	4	1.
O(3)	09	58	14	1.
O(4)	14	41	<u>3</u> 4	1.,
0(5)	ł	14	34	1.

niobium atoms were proposed by comparison with KNb_3O_8 (7). We have supposed that both structures exhibit very similar layers of octahedra Nb₃O₈: thus all atoms were located at the level $z = \frac{1}{4}$ and $\frac{3}{4}$. The refine-

TABLE IV

Observed and Calculated Intensities for NaNb₃O₈

h k l	Iobs	I _{calc}	h k l	Iobs	I _{calc}
010	71.31	70.09	350	ı r	2.42
110	40.65	38.22	160	1 1	0.96
020	18.95	17.48	440		0.44
120	1 7 00	∫ 3.03	520	20.45	0.32
200	f 7.00	l 2.71	251	1 1	13.11
210	8.50	9.61	431	1 1	0.71
011]	(34.09	032	\int	1.20
101	j 33.17	l 0.02	222	12.97	12.59
030)	(11.05	501] (7) [0.58
220	} 100.00	{ 57.90	260	j 6.73 j	6.73
111		25.28	511) (2.13
130	8.00	5.24	312	1	3.91
121	22.50	23.42	530	{ II.9/ {	3.51
310	10.72	11.20	061		1.52
211	18.71	20.19	351	í Ì	0.10
230	5.24	4.98	161		4.93
040)	(20.45	441		0.24
320	26.44	1.18	521	20.70	9.58
031	20.44	7.99	042		4.18
221	J	0.78	322	J	0.42
140	1 7 40	j̃ 3.28	360	í í	0.77
131	∫ /. 4 8	l 3.40	600	{ 4.50 {	2.70
301	3.74	4.34	261	J	0.14

hkl	Iobs	Icale	h k I	I_{obs}	Icalc
311	4.23	4.19	070) (0.35
330]		(23.27	610	1 1	0.70
240	20.00	2.44	540		0.57
400	29.00	3.63	531		0.38
231		1.12	332	(11.47)	8.71
041 į	2 40	j 0.62	242		0.83
321 ∫	3.49	3.55	170		0.03
141	2.24	∫ 1.31	402		1.60
050∫	2.24	L 1.98	152	ί Ì	1.32
420	1.50	1.53	361		0.10
150	2.74	3.45	071		7.41
340	6 32	∫ 1.96	611		0.86
331 ∫	0.23	l 4.18	541	$\{12.72\}$	0.59
241	14 22	∫ 0.61	342	1 1	0.77
002 5	14.22	l14.08	630		0.44
411		0.11	460		0.03
012	3.40	J 0.88	171	J	0.10
250 (5.47] 1.44	512	3.74	3.35
430 J		(1.79	180		0.29
112	1.50	2.08	551		1.33
051	1.50	2.47	013	1 1	1.27
421		0.39	352		1.42
022 }	3.49	{ 0.93	162	(3.10)	0.41
151 J		2.11	103		0.01
122		(0.33	442		0.36
202		0.32	522	\mathbf{J}	0.18
510	25 67	4.98	280) (0.46
212	0.07	1.68	560		0.09
341		23.75	720		0.01
060 J		5.99	262	(^{3.24})	3.83
-		•	123		1.46
			470	JU	0.34

ment of the structure was carried out with the program Maryse (10) which takes the orientation phenomena into account. Only the atomic positions were refined.

The reliability factor calculated on the intensities was lowered to R = 0.07 for the atomic positions given in Table III. In Table IV the observed and calculated intensities are given.

Description of the Structure of NaNb₃O₈ and Discussion

The rather small number of data versus the rather great number of variable parame-

TABLE IV—Continued

FIG. 2. Projection of the structure on (001) (a) in terms of edge-sharing octahedra, (b) in terms of edgesharing octahedra sharing their corners with tetrahedra, (c) in terms of ribbons of corner-sharing pyramids and tetrahedra.

ters does not allow an accurate determination of the atomic positions. It is clear that the results obtained here must be considered as a structural model rather than an accurate structure. Nevertheless, the drastic distortion of the NbO₆ octahedra (Table V), (Fig. 2a) can be considered significant, in agreement with the results previously observed for KNb₃O₈ on a single crystal (7). The two abnormally long Nb(2)-O(1) distances (2.57 Å) are to be compared to the one observed for Nb(1) in KNb_3O_8 (2.42 Å); consequently it is clear that Nb(2) tends to take a tetrahedral coordination in NaNb₃ O_8 . Although less distorted, the Nb(1) O_6 octahedron is characterized by one long Nb(1)–O(4) distance (2.35 Å) which can be compared to that observed for Nb(2) in KNb_3O_8 (2.29 Å).

From these results it appears that the layers of NaNb₃O₈ can also be described in terms of edge-sharing Nb(1)O₆ octahedra sharing their corners with Nb(2)O₄ tetrahedra (Fig. 2b) or in terms of ribbons of corner-sharing Nb(1)O₅ pyramids and Nb(2)O₄ tetrahedra (Fig. 2c). In this respect those structures can be compared to those of vanadium bronzes $A_{1+x}V_3O_8$ (11, 12) whose layers are generally described in terms of 2 \times 2 edge-sharing octahedra linked through VO₅ pyramids but which can also described as only edge-sharing VO_6 octahedra (1). Moreover those oxides exhibit a similarity with the vanadium phosphates such as $(VO)_2P_2O_7$ (13) and $VOPO_4$ (14) whose three-dimensional framework is built-up from PO₄ tetrahedra and VO₆ octahedra.

The projection of this structure on (001) (Fig. 3a) shows that its layers of octahedra are similar to those observed for KNb₃O₈ (Fig. 3b). In both structures each $[Nb_3O_8]$ layer is formed of infinite ribbons of cornerand edge-sharing octahedra running along a (Figs. 3c and 3d). These ribbons share the corners of their octahedra along c and are associated through their edges along b. The main difference between the two structures deals with the relative positions of two successive layers: the structure of NaNb₃O₈ can indeed be deduced from that of KNb₃O₈ by displacing one layer out of two of c/2. This difference between sodium and potassium is very similar to the one observed by

TABLE V Coordination of the Cations

Nb(1)-O(2)	1.70 Å	Nb(2)-O(3)	1.77 (×2) Å
Nb(1)-O(1)	1.93 (×2)	Nb(2)-O(4)	2.03 (×2)
Nb(1)-O(5)	2.01	Nb(2) - O(1)	2.57 (×2)
Nb(1)-O(3)	2.16		
Nb(1)-O(4)	2.35	Na-O(2)	2.69 (×4) Å
		Na-O(5)	2.23

FIG. 3. Projection on (001) of (a) $NaNb_3O_8$ and (b) KNb_3O_8 . Projection on (100) of (c) $NaNb_3O_8$ and (d) KNb_3O_8 .

comparison of the lamellar oxides $K_x Ti_{2-x} M_x O_4$ (15) and NaMnO₂- β (16). Both oxides exhibit similar layers of edgesharing octahedra (Fig. 4) and differ by the relative positions of their layers: the structure of NaMnO₂- β (Fig. 4b) is deduced from that of $K_x Ti_{2-x} M_x O_4$ (Fig. 4a) by a translation of one layer out two of a/2 in the orthorhombic cell. These two examples clearly show that the positions of the layers are mainly dictated by the coordination of

FIG. 4. Structure of (a) $K_x M_2 O_4$ and (b) NaMnO₂- β .

the A cation located between the layers: the great ability of K⁺ to take the trigonal prismatic coordination makes that the octahedral layers adopt similar positions in KNb₃O₈ (Fig. 3b) and $K_rTi_{2-r}M_rO_4$ (Fig. 4a) respectively; on the contrary, the introduction of Na⁺ leads to a translation of one layer out of two involving fivefold coordination of Na⁺ in NaNb₃O₈ (Fig. 3a) and an octahedral coordination in NaMnO₂- β (Fig. 4b). This ability of sodium to displace the octahedral layer of a lamellar structure with respect to potassium can also be observed by comparing the structures of K₃Ti₅NbO₁₄ (Fig. 5a) and Na₂Ti₃O₇ (Fig. 5b) which differ one from the other by a translation of b/2 of one layer out of two alternately. However, in these latter compounds the K⁺ ions adopt a pseudocubic coordination whereas the Na⁺ ions exhibit a ninefold and a sevenfold coordination with rather dispersed Na-O distances ranging from 2.23 to 2.93 Å.

In conclusion, the synthesis of the niobate $NaNb_3O_8$ with an original structure

FIG. 5. Structure of (a) $K_3Ti_5NbO_{14}$ and (b) Na_2 $Ti_3O_7.$

by soft chemistry methods suggests that other niobates, ANb_3O_8 with univalent cations (Ag⁺, Rb⁺, Cs⁺, Tl⁺) or with divalent cations (Sr²⁺, Ba²⁺, Pb²⁺) with related structures should be synthesized by such methods.

References

- 1. B. RAVEAU, Rev. Inorg. Chem., in press.
- 2. S. ANDERSON AND A. D. WADSLEY, Acta Crystallogr. 14, 1245 (1961).
- 3. M. HERVIEU, H. RABBAH, G. DESGARDIN, AND B. RAVEAU, J. Solid State Chem. 35, 200 (1980).
- 4. M. HERVIEU AND B. RAVEAU, J. Solid State Chem. 32, 161 (1980).
- 5. C. FOUASSIER, G. MATEJKA, J. M. REAU, AND P. HAGENMULLER, J. Solid State Chem. 6, 532 (1973).

- 6. C. DELMAS, C. FOUASSIER, AND P. HAGENMUL-LER, J. Solid State Chem. 13, 165 (1975).
- 7. M. GASPERIN, Acta Crystallogr. B 38, 2024 (1982).
- 8. R. NEDJAR, M. M. BOREL, AND B. RAVEAU, Mater. Res. Bull. 20, 1291 (1985).
- 9. Y. BOUILLAUD, Bull. Soc. Chim. 1, 112 (1968).
- H. L'HELGOUALCH, G. FONTENEAU, AND J. PAN-NETIER, unpublished program (1975).
- 11. A. D. WADSLEY, Acta Crystallogr. 10, 261 (1957).
- A. CASALOT AND M. POUCHARD, Bull. Soc. Chim. 10, 3817 (1967).
- 13. C. BORDES, P. COURTINE, AND J. W. JOHNSON, J. Solid State Chem. 55, 270 (1984).
- 14. J. W. JOHNSON, D. C. JOHNSTON, A. J. JACOB-SON, AND J. F. BRODY, J. Amer. Chem. Soc. 106, 8123 (1984).
- 15. A. F. REID, W. G. MUMME, AND A. D. WADSLEY, Acta Crystallogr. B 24, 1228 (1968).
- J. P. PARANT, R. OLAZCUAGA, M. DEVALETTE, C. FOUASSIER, AND P. HAGENMULLER, J. Solid State Chem. 3, 1 (1971).